Research
Learning Rate-Free Reinforcement Learning: A Case for Model Selection with Non-Stationary Objectives
Aida Afshar, Aldo Pacchiano
ArXiv
Active Preference Optimization for Sample Efficient RLHF
Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, Sayak Ray Chowdhury
ArXiv
A Theoretical Framework for Partially-Observed Reward States in RLHF
Chinmaya Kausik, Mirco Mutti, Aldo Pacchiano, Ambuj Tewari
ICLR 2025
Provable Interactive Learning with Hindsight Instruction Feedback
Dipendra Misra, Aldo Pacchiano, Robert E Schapire
ICML 2024
Multiple-policy Evaluation via Density Estimation
Yilei Chen, Aldo Pacchiano, Ioannis Ch. Paschalidis
ArXiv
Data-Driven Regret Balancing for Online Model Selection in Bandits
Aldo Pacchiano, Christoph Dann, Claudio Gentile
AISTATS 2024
Contextual Bandits with Stage-wise Constraints
Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett
ArXiv
A Unified Model and Dimension for Interactive Estimation
Nataly Brukhim, Aldo Pacchiano, Miroslav Dudik, Robert Schapire
NeuRIPS 2023
Anytime Model Selection in Linear Bandits
Parnian Kassraie, Aldo Pacchiano, Nicolas Emmenegger, Andreas Krause
NeuRIPS 2023
Experiment Planning with Function Approximation
Aldo Pacchiano, Jonathan Lee, Emma Brunskill
NeuRIPS 2023
Supervised Pretraining Can Learn In-Context Reinforcement Learning
Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, Emma Brunskill
NeuRIPS 2023